# Immunohematology Cases from the Crypt

Sandra J. Nance, MS, MT(ASCP)SBB Senior Director, IRLs, American Red Cross Adjunct Assistant Professor, University of Pennsylvania Senior Director, American Rare Donor Program

The need is constant. The gratification is instant. Give blood.<sup>™</sup>



#### **Disclosures**

### Grifols Advisory Board 2018 Speaker for Griofols 2018 TSEC Series Neither pertinent to this presentation



The Tarim mummies are a series of mummies discovered in the Tarim Basin in Xinjiang, China, which date from 1900 BC to 200 AD. In addition to being very well-preserved finds, controversy flows around them as DNA tests seem to show that they are the result of Asian and Caucasian mating thousands of years before it's commonly thought that the two peoples intermingled.



American Red Cross

World Mysteries Blog

# **Objectives**

- Identify the various tools used in Immunohematology to resolve a complex patient
- Discuss case critical observations and testing results for immunohematologic evaluations
- Understand the need to fully characterize for RHD and RHCE the patients and reagent red cells



Underneath St Peter's Basilica are the mysterious Scavi, or excavations. Also known as the Vatican Necropolis, Tomb of the Dead, or St. Peter's Tomb, the site is a burial ground dating back to the fourth century.

# Case #1: Is it Compatible?

Case history:

- 32 y.o. AA female
- Sickle Cell Disease
- 7 weeks pregnant and in painful crisis



# **Case #1: Previous Antibody History**

- Anti-S
- Warm auto-antibody
- Cold auto-antibody
- RBCs type weak D positive



### **The Good News:**

- We have an HEA Beadchip result!
- The negative antigens are
  C, E, K, Jk<sup>b</sup>, Fy<sup>a</sup>, Fy<sup>b</sup>, S
  and also the low prevalence antigens
  Kp<sup>a</sup>, Js<sup>a</sup>, Lu<sup>a</sup>, Di<sup>a</sup>, Co<sup>b</sup>, LW<sup>b</sup>, Sc:2
- Patient has not been transfused in past 5 years!



### The Bad News is:

- HEA notes that the patient:
  —Is predicted to be VS+ V+
  —And has the GATA mutation
- The patient is at risk for:
  - Anti-S (already identified)
  - Anti- C, -E, -K, -Jk<sup>b</sup>, -Fy<sup>a</sup>
  - And.....anti- Fy3 or Fy5
  - And .....



Palermo's most famous citizens are very, very old. Underneath Sicily's capital city, known for mafioso and stately Baroque churches, preserved corpses fill five subterranean limestone corridors and have been attracting visitors with a morbid curiosity for centuries.



7

#### The Results of the *RHD* and *RHCE* Variant Allele Testing are in....

Probable RHD genotype:
 —RHD\* DAR1/RHD\*DAR1
 At risk for allo-anti-D

Oh boy, what else will come crawling out of the crypt?

- Probable *RHCE* genotype:
  - RHCE\*ceEK/RHCE\*ce48C, 697C, 712G, 733G, 916A

Both alleles code for a predicted phenotype of hr<sup>s</sup>-

And at risk for: anti-c, -e, -hr<sup>S</sup>, -f



|    |   |   |     |    |     |     |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   |    | L  | ISS        |  |
|----|---|---|-----|----|-----|-----|---|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|---|---|---|---|----|----|------------|--|
| #  | D | С | E   | с  | e   | f   | к | k | K<br>p<br>a | K<br>p<br>b | J<br>s<br>a | J<br>s<br>b | F<br>y<br>a | F<br>y<br>b | J<br>k<br>a | J<br>k<br>b | L<br>e<br>a | L<br>e<br>b | P<br>1 | М | N | S | s | IS | 37 | lgG        |  |
| 1  | + | 0 | +   | +  | 0   | 0   | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | 0      | + | 0 | 0 | + | 1+ | +  | 3+         |  |
| 2  | + | 0 | +   | +  | 0   | 0   | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | +      | 0 | + | 0 | + | 1+ | ÷  | 3+         |  |
| 3  | + | + | 0   | 0  | +   | 0   | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | 0           | +      | 0 | + | 0 | + | 1+ | •  | 2+         |  |
| 4  | 0 | W | 0   | +  | +   | +   | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | 0           | 0           | 0           | +      | + | + | 0 | + | 1+ | þ  | 1+         |  |
| 5  | 0 | 0 | 0   | +  | +   | +   | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | 0           | +           | 0           | +      | 0 | + | 0 | + | 1+ | D  | 2+         |  |
| 6  | 0 | 0 | 0   | +  | +   | +   | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | 0           | 0           | 0           | 0      | + | + | 0 | + | 1+ | 0  | 2+         |  |
| AC |   |   |     |    |     |     |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   | 1+ | 0  | <b>0</b> √ |  |
|    |   |   | All | RE | 3Cs | s S | - |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   |    |    |            |  |

All RBCs and autocontrol positive at RT E+ RBCs positive at 37C (cells 1,2)

American Red Cross

|    |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   |    |   | LI | SS         |  |
|----|---|---|---|---|---|---|---|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|---|---|---|---|----|---|----|------------|--|
| #  | D | С | E | с | е | f | к | k | K<br>p<br>a | K<br>p<br>b | J<br>s<br>a | J<br>s<br>b | F<br>y<br>a | F<br>y<br>b | J<br>k<br>a | J<br>k<br>b | L<br>e<br>a | L<br>e<br>b | P<br>1 | М | N | S | s | IS |   | 37 | lgG        |  |
| 1  | + | 0 | + | + | 0 | 0 | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | 0      | + | 0 | 0 | + | 1+ |   | 1+ | 3+         |  |
| 2  | + | 0 | + | + | 0 | 0 | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | +      | 0 | + | 0 | + | 1+ |   | 1+ | 3+         |  |
| 3  | + | + | 0 | 0 | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | 0           | +      | 0 | + | 0 | + | 1+ |   | 0  | 2+         |  |
| 4  | 0 | W | 0 | + | + | + | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | 0           | 0           | 0           | +      | + | + | 0 | + | 1+ |   | 0  | 1+         |  |
| 5  | 0 | 0 | 0 | + | + | + | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | 0           | +           | 0           | +      | 0 | + | 0 | + | 1+ |   | 0  | 2+         |  |
| 6  | 0 | 0 | 0 | + | + | + | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | 0           | 0           | 0           | 0      | + | + | 0 | + | 1+ |   | 0  | 2+         |  |
| AC |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   | 1+ | • | 0  | <b>0</b> √ |  |

#### All RBCs S-All RBCs and autocontrol positive at RT E+ RBCs positive at 37C (cells 1,2)



10

- DAT negative
- Antibodies detected:
  - Anti-E at 37C definitely suspected
  - Anti-S not assessed (previous)
  - Presumed cold autoantibodies reactive at RT only Caught a little break here!
  - Plus another antibody......
- Wonder if the previous "warm autoantibody" was anti-E and anti-hr<sup>S</sup>? having these two would yield reactivity with all normal RBCs tested

#### Case #1 - Allogeneic Adsorption using Papain Treated Adsorbing RBCs

|        |    |   |          |      |              |       |        |                      |             |             |             |             |             |                                 |                |                |               |               |               |             |              |      |    | R | 1 Ads      | R2 | Ads           | rr | Ads        |
|--------|----|---|----------|------|--------------|-------|--------|----------------------|-------------|-------------|-------------|-------------|-------------|---------------------------------|----------------|----------------|---------------|---------------|---------------|-------------|--------------|------|----|---|------------|----|---------------|----|------------|
| #      | D  | С | E        | С    | е            | f     | к      | k                    | K<br>p<br>a | K<br>p<br>b | J<br>s<br>a | J<br>s<br>b | F<br>y<br>a | F<br>y<br>b                     | J<br>k<br>a    | J<br>k<br>b    | L<br>e<br>a   | L<br>e<br>b   | P<br>1        | М           | N            | S    | S  |   | PEG<br>IgG |    | PEG<br>IgG    |    | PEG<br>IgG |
| 1      | +  | + | 0        | 0    | +            | 0     | 0      | +                    | 0           | +           | 0           | +           | +           | 0                               | +              | 0              | 0             | 0             | +             | +           | +            | +    | 0  |   | <b>0</b> √ |    | 2+            |    | 2+         |
| 2      | +  | + | +        | +    | 0            | 0     | 0      | +                    | 0           | +           | 0           | +           | 0           | +                               | +              | +              | 0             | 0             | +             | +           | 0            | 0    | *  |   | 3+         |    | 2+            |    | 3+         |
| 3      | +  | 0 | +        | +    | 0            | 0     | 0      | +                    | 0           | +           | 0           | +           | 0           | +                               | 0              | +              | 0             | 0             | +             | 0           | +            | 0    |    |   | 3+         |    | <b>0</b> √    |    | 3+         |
| 4      | +  | 0 | 0        | +    | +            | 0     | 0      | +                    | 0           | +           | 0           | +           | +           | 0                               | +              | +              | 0             | 0             | +             | 0           | +            | 0    | +  |   | <b>0</b> √ |    | 2+            |    | UV         |
| 5      | +  | 0 | 0        | +    | +            | +     | +      | +                    | 0           | +           | 0           | +           | 0           | 0                               | +              | +              | 0             | 0             | 0             | 0           | +            | 0    | +  |   | <b>0</b> √ |    | 2+            |    | <b>0</b> √ |
| 6      | 0  | 0 | 0        | +    | +            | +     | 0      | +                    | 0           | +           | 0           | +           | +           | +                               | +              | 0              | +             | 0             | 0             | +           | +            | +    | 0  |   | <b>0</b> √ |    | 2+            |    | <b>0</b> √ |
| 7      | 0  | 0 | 0        | +    | +            | +     | 0      | +                    | 0           | +           | 0           | +           | 0           | +                               | 0              | +              | 0             | +             | +             | +           | 0            | 0    | +  |   | <b>0</b> √ |    | 2+            |    | <b>0</b> √ |
| A<br>C |    |   |          |      |              |       |        |                      |             |             |             |             |             |                                 |                |                |               |               |               |             |              |      |    |   | <b>0</b> √ |    | <b>0</b> √    |    | <b>0</b> √ |
|        | 12 |   | R1<br>R2 | D+ C | + E-<br>- E+ | c- e+ | · K- J | k(a-) \$<br>k(b-) \$ |             |             |             |             | incl<br>con | e: In<br>udes<br>cern<br>ninate | S ar<br>s with | nd s t<br>h am | ypec<br>bigui | l RB<br>ty of | Cs to<br>enzy | elin<br>/me | nina<br>trea | te a | ny |   |            |    | meri<br>ed Cr |    |            |

#### Case #1 - Allogeneic Adsorption using Papain Treated Adsorbing RBCs

|        |    |   |          |              |      |       |        |                      |             |             |             |             |             |                                 |                |                |                |               |               |               |              |      |    | R1 Ads     | R2 Ads          | rr Ads     |
|--------|----|---|----------|--------------|------|-------|--------|----------------------|-------------|-------------|-------------|-------------|-------------|---------------------------------|----------------|----------------|----------------|---------------|---------------|---------------|--------------|------|----|------------|-----------------|------------|
| #      | D  | С | Е        | с            | е    | f     | к      | k                    | K<br>p<br>a | K<br>p<br>b | J<br>s<br>a | J<br>s<br>b | F<br>y<br>a | F<br>y<br>b                     | J<br>k<br>a    | J<br>k<br>b    | L<br>e<br>a    | L<br>e<br>b   | P<br>1        | м             | N            | S    | S  | PEG<br>IgG | PEG<br>IgG      | PEG<br>IgG |
| 1      | +  | + | 0        | 0            | +    | 0     | 0      | +                    | 0           | +           | 0           | +           | +           | 0                               | +              | 0              | 0              | 0             | +             | +             | +            | +    | 0  | 0√         | 2+              | 2+         |
| 2      | +  | + | )+       | +            | 0    | 0     | 0      | +                    | 0           | +           | 0           | +           | 0           | +                               | +              | +              | 0              | 0             | +             | +             | 0            | 0    | +  | 3+         | 2+              | 3+         |
| 3      | +  | 0 | +        | +            | 0    | 0     | 0      | +                    | 0           | +           | 0           | +           | 0           | +                               | 0              | +              | 0              | 0             | +             | 0             | +            | 0    | +  | 3+         | <b>0</b> √      | 3+         |
| 4      | +  | 0 | 0        | +            | +    | 0     | 0      | +                    | 0           | +           | 0           | +           | +           | 0                               | +              | +              | 0              | 0             | +             | 0             | +            | 0    | +  | <b>0</b> √ | 2+              | 0√         |
| 5      | +  | 0 | 0        | +            | +    | +     | +      | +                    | 0           | +           | 0           | +           | 0           | 0                               | +              | +              | 0              | 0             | 0             | 0             | +            | 0    | +  | <b>0</b> √ | 2+              | 0√         |
| 6      | 0  | 0 | 0        | +            | +    | +     | 0      | +                    | 0           | +           | 0           | +           | +           | +                               | +              | 0              | +              | 0             | 0             | +             | +            | +    | 0  | <b>0</b> √ | 2+              | 0√         |
| 7      | 0  | 0 | 0        | +            | +    | +     | 0      | +                    | 0           | +           | 0           | +           | 0           | +                               | 0              | +              | 0              | +             | +             | +             | 0            | 0    | +  | <b>0</b> √ | 2+              | 0√         |
| A<br>C |    |   |          |              |      |       |        |                      |             |             |             |             |             |                                 |                |                |                |               |               |               |              |      |    | <b>0</b> √ | <b>0</b> √      | 0√         |
|        | 13 |   | R1<br>R2 | D+ C<br>D+ C | - E+ | c- e+ | · K- J | k(a-) \$<br>k(b-) \$ |             |             |             |             | incl<br>con | e: In<br>udes<br>cern<br>ninate | S ar<br>s with | nd s t<br>h am | typec<br>bigui | l RB<br>ty of | Cs to<br>enzy | ) elin<br>/me | nina<br>trea | te a | ny |            | Ameri<br>Red Cr |            |

#### Case #1 - Allogeneic Adsorption using Papain Treated Adsorbing RBCs

|        |    |   |            |              |       |       |        |                      |             |             |             |             |             |                                  |                |                |               |              |               |             |              |      |    | R1 Ads     | R2 Ads          | rr Ads     |
|--------|----|---|------------|--------------|-------|-------|--------|----------------------|-------------|-------------|-------------|-------------|-------------|----------------------------------|----------------|----------------|---------------|--------------|---------------|-------------|--------------|------|----|------------|-----------------|------------|
| #      | D  | С | E          | с            | е     | f     | к      | k                    | K<br>p<br>a | K<br>p<br>b | J<br>s<br>a | J<br>s<br>b | F<br>y<br>a | F<br>y<br>b                      | J<br>k<br>a    | J<br>k<br>b    | L<br>e<br>a   | L<br>e<br>b  | P<br>1        | М           | N            | S    | S  | PEG<br>IgG | PEG<br>IgG      | PEG<br>IgG |
| 1      | +  | + | 0          | 0            | +     | 0     | 0      | +                    | 0           | +           | 0           | +           | +           | 0                                | +              | 0              | 0             | 0            | +             | +           | +            | 0    | +  | <b>0</b> √ | 2+              | 2+         |
| 2      | +  | + | +          | +            | 0     | 0     | 0      | +                    | 0           | +           | 0           | +           | 0           | +                                | +              | +              | 0             | 0            | +             | +           | 0            | 0    | +  | 3+         | 2+              | 3+         |
| 3      | +  | 0 | +          | +            | 0     | 0     | 0      | +                    | 0           | +           | 0           | +           | 0           | +                                | 0              | +              | 0             | 0            | +             | 0           | +            | 0    | +  | 3+         | 0√              | 3+         |
| 4      | +  | 0 | 0          | +            | +     | 0     | 0      | +                    | 0           | +           | 0           | +           | +           | 0                                | +              | +              | 0             | 0            | +             | 0           | +            | 0    | +  | 0√         | 2+              | 0√         |
| 5      | +  | 0 | 0          | +            | +     | +     | +      | +                    | 0           | +           | 0           | +           | 0           | 0                                | +              | +              | 0             | 0            | 0             | 0           | +            | 0    | +  | 0√         | 2+              | 0√         |
| 6      | 0  | 0 | 0          | +            | +     | +     | 0      | +                    | 0           | +           | 0           | +           | +           | +                                | +              | 0              | +             | 0            | 0             | +           | +            | 0    | +  | 0√         | 2+              | 0√         |
| 7      | 0  | 0 | 0          | +            | +     | +     | 0      | +                    | 0           | +           | 0           | +           | 0           | +                                | 0              | +              | 0             | +            | +             | +           | 0            | 0    | +  | 0√         | 2+              | 0√         |
| A<br>C |    |   |            |              | V     |       |        |                      |             |             |             |             |             |                                  |                |                |               |              |               |             |              |      |    | <b>0</b> √ | 0√              | <b>0</b> √ |
|        | 14 |   | R1  <br>R2 | D+ C<br>D+ C | )- E+ | c- e+ | - K- J | k(a-) \$<br>k(b-) \$ |             |             |             |             | incl<br>con | e: In<br>udes<br>cern:<br>ninate | S ar<br>s witl | nd s t<br>h am | ypec<br>bigui | RB0<br>ty of | Cs to<br>enzy | elin<br>/me | nina<br>trea | te a | ny |            | Ameri<br>Red Cr |            |

- Adsorption studies showed:
  - Anti-E at 37C and AHG in R1 and rr adsorption
  - Anti-C at AHG in R2 and rr adsorption
  - Anti-e at AHG in R2 adsorption (suspect anti-hr<sup>s</sup>)
  - Anti-Hr not assessed, would be adsorbed to allogeneic RBCs
  - Anti-S not assessed



#### What is hr<sup>s</sup> and Hr?

- hr<sup>s</sup>- RBCs are also Hr-
- Some of the other alleles associated with being hr<sup>s</sup> and Hr- are below, but e expression may be different from allele to allele:
  - ceAR
  - ceEK
  - ceMO
- Other RBCs also negative for hr<sup>S</sup> and Hr
  - D -
  - Rhnull



### What to do?.....

Multiple choice question for you:

- A. Request allele selected blood from ARDP
- B. Monocyte Monolayer Test
- C. Least incompatible red cells by crossmatch
- D. Tell the Doctor there is no blood available
- E. Test siblings
- F. Autologous donation

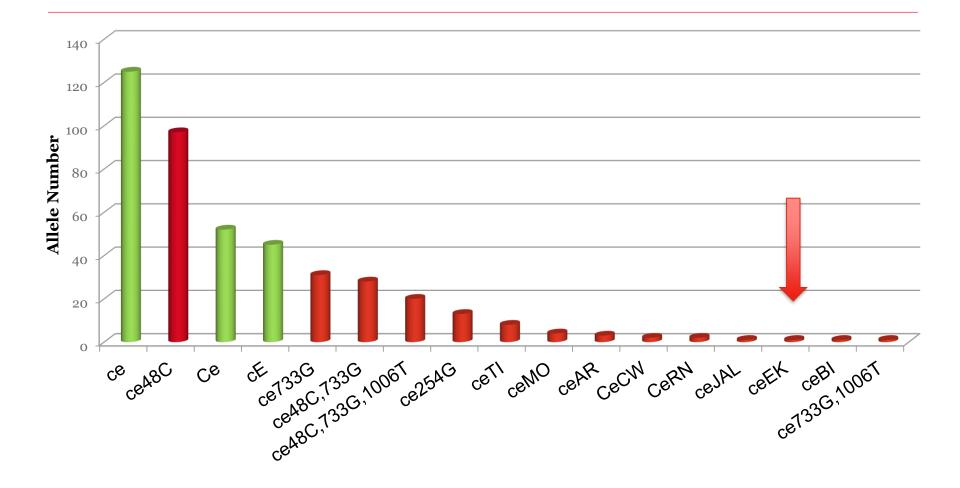




#### The patient's HYPOTHETICAL RHCE alleles: ce X / ceY

|          | Allele 1 |        |        |
|----------|----------|--------|--------|
| Allele 2 | ce X     | ce Y   | ce Z   |
| ce X     | Tier 2   | Tier 1 | Tier 3 |
| ce Y     |          | Tier 2 | Tier 3 |
| ce Z     |          |        | Tier 3 |

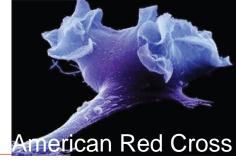
Tier 1 match has exactly the alleles of the patient Tier 2 has no allele that the patient does not Tier 3 has similar but not identical allele(s)




Then repeat the process with RHD alleles

American Red Cross

From Dr Margaret Keller, National Molecular and Genomics Laboratory


#### **RHCE** Alleles in African American Donors

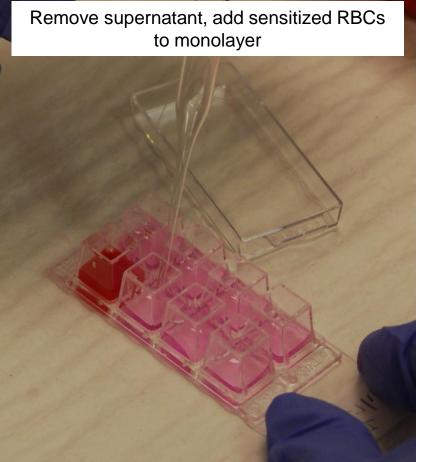




Keller MA et al. 2013. Transfusion 53(2S):28A

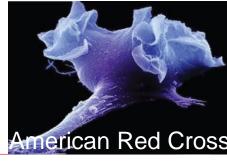
# Monocyte Monolayer Assay



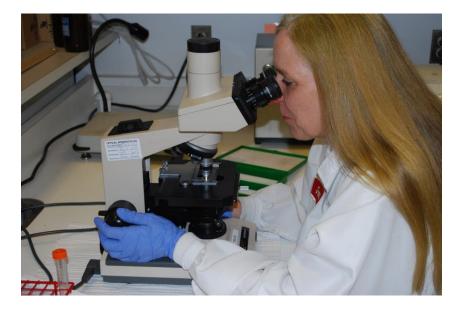

- Monolayer of monocytes prepared
- Reagent red cells sensitized in vitro with patient's antibody
- Sensitized reagent red cells added to prepared monolayer of monocytes



Tissue Culture Chamber Slide

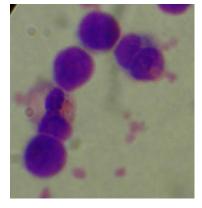


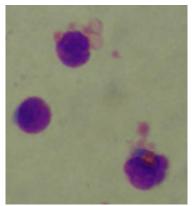

Monolayer of monocytes



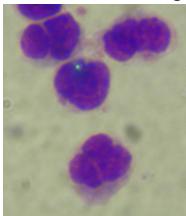


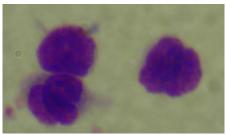

# Monocyte Monolayer Assay





Slide stained and analyzed for adherent and phagocytosed red cells




Joan Maurer, SBB reading MMA slides


#### **Positive MMA**





Negative MMA





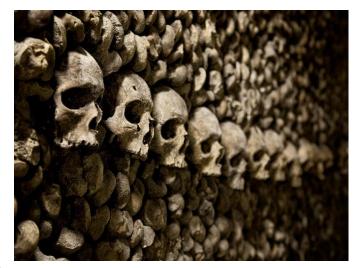


# Monocyte Monolayer Assay Data NRLBGS 1995-2017

| Anti-           | TT | POS | NEG | Anti-             | TT  | POS | NEG |
|-----------------|----|-----|-----|-------------------|-----|-----|-----|
| AnWj            | 2  | 1   | 1   | Js <sup>b</sup>   | 1   | 1   | 0   |
| At <sup>a</sup> | 4  | 3   | 1   | Kp <sup>b</sup>   | 6   | 2   | 4   |
| Au <sup>a</sup> | 1  | 0   | 1   | Ku                | 1   | 1   | 0   |
| Co <sup>a</sup> | 2  | 2   | 0   | Lan               | 11  | 7   | 4   |
| Cr <sup>a</sup> | 4  | 4   | 0   | LU Sys            | 21  | 19  | 2   |
| Di <sup>b</sup> | 11 | 8   | 3   | Lu <sup>b</sup>   | 14  | 12  | 2   |
| Dob             | 5  | 1   | 4   | Lw                | 3   | 2   | 1   |
| E               | 1  | 1   | 0   | Μ                 | 11  | 5   | 6   |
| е               | 3  | 2   | 1   | Ν                 | 2   | 1   | 1   |
| GE Sys          | 31 | 16  | 15  | PP1P <sup>k</sup> | 1   | 1   | 0   |
| hr <sup>B</sup> | 3  | 2   | 1   | RH Sys            | 1   | 1   | 0   |
| hr <sup>s</sup> | 7  | 4   | 3   | 2                 | 1   | 0   | 1   |
| Ну              | 9  | 7   | 2   | Sc1               | 1   | 1   | 0   |
|                 | 5  | 1   | 4   | Tc <sup>a</sup>   | 2   | 1   | 1   |
| Jk3             | 1  | 0   | 1   | U                 | 4   | 2   | 2   |
| Jo <sup>a</sup> | 10 | 4   | 6   | Vel               | 13  | 10  | 3   |
| Jr <sup>a</sup> | 15 | 9   | 6   | Yt <sup>a</sup>   | 195 | 119 | 76  |

<sup>22</sup> Maurer J, Nance S, Nickle P. Monocyte Monolayer Assay (MMA) to Predict Clinical Significance of Alloantibodies: a 22 year Review. AABB Abstract 2018



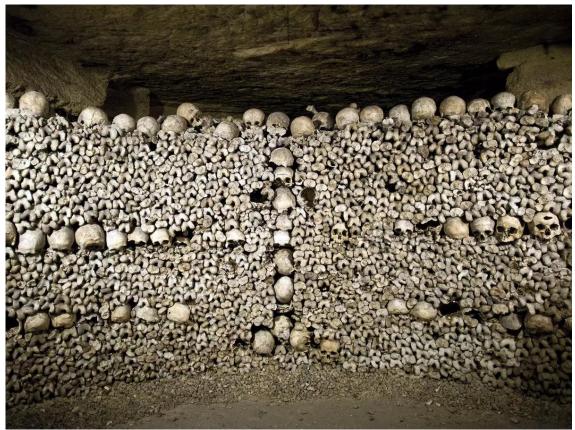

# Least Incompatible Crossmatch?

- May be able to perform IS XM to check for ABO incompatibility
- May be able to detect incompatibility due to antibody to low prevalence antigen not detected in serologic work
- Will likely not make a difference in survival of transfused RBCs if antibody reactive with all RBCs tested
- May give a false sense of security about the potential for transfusion reaction



# **Tell Doctor No Blood is Available?**

- Truthful if say no compatible blood available
- May be desired if patient needs blood now, to ensure that the physician is not holding off on transfusion for results of work-up




Roughly six million bodies were laid to rest in the Paris catacombs. The site became a popular burial ground during the 17th century, when Parisian cemeteries could no longer hold the city's dead. Smithsonian



# **Test Siblings?**

#### Always a good idea!




The creepy Paris Catacombs is an underground labyrinth stocking the remains of about six million Parisians, removed from cemeteries at the end of the 18th century. Long tunnels are lined with neatly stacked bones, which will surprise but potentially gross out the whole family. Travel and Leisure



# **Autologous Donation?**

- Always a good idea if possible
- Often can be arranged for planned surgeries
- Can do during pregnancy if mother healthy
  - -Freeze one unit (preferably the first) into aliquot
  - -Freeze one unit whole, 2 units if possible



Mutter Museum, Philadelphia: wall of prisoner heads used in study of intellect related to head size! No correlation was found.



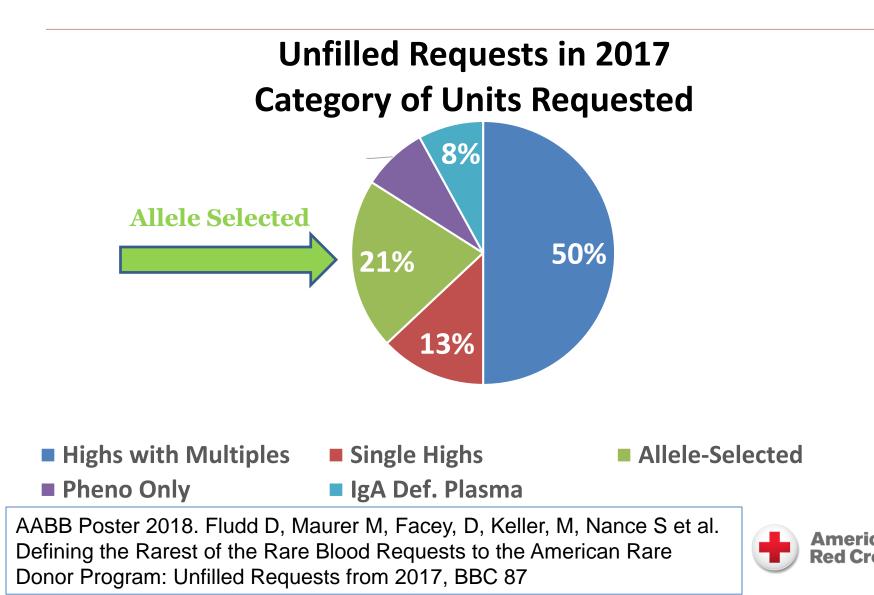
#### What was Really Done and..... What Happened?

#### MMA Results

- RHCE\*ceAR/RHCE\*ceAR resembles ceEK
  —Negative in IAT, 0.2% MMA
- RHCE\*ceMO/RHCE\*/ceAR resembles ceEK
  —2+ in IAT, 2.2% MMA
- RHCE\*ceEK/RHCE\*ceEK-like lacking 48C
  —1+ in IAT, 8.8% MMA

rr

—3+ in IAT, 43% MMA


RBC sample with Exact allele match not available for testing



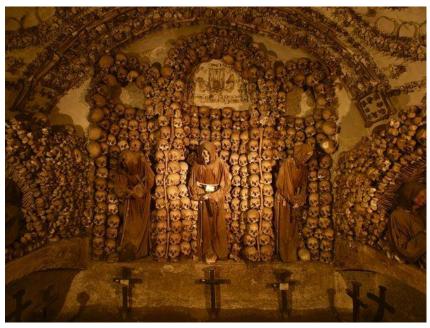




#### **ARDP 2017 Unfilled Requests**



#### **ARDP 2017 Unfilled Requests**




AABB Poster 2018. Fludd D, Maurer M, Facey, D, Keller, M, Nance S et al. Defining the Rarest of the Rare Blood Requests to the American Rare Donor Program: Unfilled Requests from 2017, BBC 87



# This Crypt Case had Many Scary Creaks!

- Anti-hr<sup>S</sup> with multiple other alloantibodies
- Has potential to make anti-D if do not match for DAR1 allele – YIKES!
- Has potential to make anti- Fy3/5 YIKES!



An elaborate homage to the dead—and a reminder of mortality to the living—adorns a crypt under Santa Maria della Concezione church in Rome. These macabre ornamentations are constructed from the bones of deceased Capuchin friars. Pinterest



#### **Case #2: What the Heck is in There?**



Five years into the Sicily Mummy Project, six macabre collections are offering scientists a fresh look at life and death on the Mediterranean island from the late 16th century to the mid-20th. National Geographic



#### **Case #2: Patient Presentation** Information

- 63 year old male
- ABO/Rh: O+
- Diagnosis: anemia
- Race: Unknown
- Previous antibodies: Not known
- Transfusions:
  - —One single donor platelet 4 months previous
  - -RBCs transfused over 5 years ago
- Order for transfusion



# Case #2 Current Serology

Gel A/S: Cell 1: 2+ Cell 2: 1+ Gel panel: All Reagent RBCs positive: 1-2+ including autocontrol DAT: Polyspecific: 2+ Anti-IgG: 2+ Anti-C3: Not tested Control: Not tested



# **IRL Testing**

DAT:

Polyspecific: 3+ Anti-IgG: 3+

Anti-C3: +<sup>w</sup>

Control: Negative

Mummies displayed along the walls of the Capuchin Catacombs of Palermo, Italy (pictures: Sterflinger)





#### **Case #2: Initial Panel**

|    |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   |    | PEG                 |  |
|----|---|---|---|---|---|---|---|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|---|---|---|---|----|---------------------|--|
| #  | D | С | E | С | е | f | к | k | K<br>p<br>a | K<br>p<br>b | J<br>s<br>a | J<br>s<br>b | F<br>y<br>a | F<br>y<br>b | J<br>k<br>a | J<br>k<br>b | L<br>e<br>a | L<br>e<br>b | P<br>1 | М | N | S | S | IS | PEG<br>Anti-<br>IgG |  |
| 1  | + | + | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | +           | 0           | +           | 0      | + | 0 | + | 0 | 0  | 2+                  |  |
| 2  | + | + | 0 | 0 | + | 0 | 0 | + | 0           | +           | +           | 0           | 0           | +           | +           | 0           | +           | +           | +      | + | + | 0 | + | 0  | 2+                  |  |
| 3  | + | 0 | + | + | 0 | 0 | 0 | + | 0           | +           | 0           | +           | 0           | 0           | 0           | +           | 0           | 0           | +      | 0 | + | 0 | + | 0  | 2+                  |  |
| 4  | + | 0 | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | +           | +           | +           | 0           | +           | 0           | +      | + | + | 0 | 0 | 0  | 2+                  |  |
| 5  | 0 | 0 | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | +           | 0           | +           | 0           | 0           | +           | +      | 0 | + | 0 | + | 0  | 1+                  |  |
| 6  | 0 | 0 | 0 | + | + | + | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | 0      | + | + | + | + | 0  | 1+                  |  |
| AC |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   | 0  | 3+                  |  |



#### **Case #2: Initial and Autoadsorption Panel**

|    |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   |        | PEG                 | PEG                          |
|----|---|---|---|---|---|---|---|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|---|---|---|---|--------|---------------------|------------------------------|
| #  | D | С | E | с | е | f | к | k | K<br>p<br>a | K<br>p<br>b | J<br>s<br>a | J<br>s<br>b | F<br>y<br>a | F<br>y<br>b | J<br>k<br>a | J<br>k<br>b | L<br>e<br>a | L<br>e<br>b | P<br>1 | м | N | S | S | I<br>S | PEG<br>Anti-<br>IgG | Auto<br>Ads*<br>Anti-<br>IgG |
| 1  | + | + | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | +           | 0           | +           | 0      | + | 0 | + | 0 | 0      | 3+                  | 3+                           |
| 2  | + | + | 0 | 0 | + | 0 | 0 | + | 0           | +           | +           | 0           | 0           | +           | +           | 0           | +           | +           | +      | + | + | 0 | + | 0      | 3+                  | 3+                           |
| 3  | + | 0 | + | + | 0 | 0 | 0 | + | 0           | +           | 0           | +           | 0           | 0           | 0           | +           | 0           | 0           | +      | 0 | + | 0 | + | 0      | 3+                  | 3+                           |
| 4  | + | 0 | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | +           | +           | +           | 0           | +           | 0           | +      | + | + | 0 | 0 | 0      | 3+                  | 3+                           |
| 5  | 0 | 0 | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | +           | 0           | +           | 0           | 0           | +           | +      | 0 | + | 0 | + | 0      | 3+                  | 3+                           |
| 6  | 0 | 0 | 0 | + | + | + | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | 0      | + | + | + | + | 0      | 3+                  | 3+                           |
| AC |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   | 0      | 3+                  |                              |

\*Autoadsorption with ZZAP treated RBCs (DTT + Papain)



# Case #2: Autoadsorbed Serum with DTT Treated RBCs

|   |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   | D | OTT Rx                              |  |
|---|---|---|---|---|---|---|---|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|---|---|---|---|---|-------------------------------------|--|
| # | D | С | E | С | e | f | к | k | K<br>p<br>a | K<br>p<br>b | J<br>s<br>a | J<br>s<br>b | F<br>y<br>a | F<br>y<br>b | J<br>k<br>a | J<br>k<br>b | L<br>e<br>a | L<br>e<br>b | P<br>1 | М | N | S | S |   | PEG<br>Auto<br>Ads*<br>Anti-<br>IgG |  |
| 1 | + | + | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | +           | 0           | +           | 0      | + | 0 | + | 0 |   | 2+                                  |  |
| 2 | + | + | 0 | 0 | + | 0 | 0 | + | 0           | +           | +           | 0           | 0           | +           | +           | 0           | +           | +           | +      | + | + | 0 | + |   | 2+                                  |  |
| 3 | + | 0 | + | + | 0 | 0 | 0 | + | 0           | +           | 0           | +           | 0           | 0           | 0           | +           | 0           | 0           | +      | 0 | + | 0 | + |   | 2+                                  |  |
| 4 | + | 0 | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | +           | +           | +           | 0           | +           | 0           | +      | + | + | 0 | 0 |   | 2+                                  |  |
| 5 | 0 | 0 | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | +           | 0           | +           | 0           | 0           | +           | +      | 0 | + | 0 | + |   | 1+                                  |  |
| 6 | 0 | 0 | 0 | + | + | + | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | 0      | + | + | + | + |   | 1+                                  |  |
|   |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   |   |                                     |  |

Autoadsorption with ZZAP treated RBCs (DTT + Papain)

<sup>37</sup> Reactivity decreased by one grade with DTT Treated RBCs



### **Allo - Adsorbed Sera Panel**

|        |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |          |    |   |   |   | R1 A         | ds | R2 a     | ads    | rr A     | ds |
|--------|---|---|---|---|---|---|---|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------|----|---|---|---|--------------|----|----------|--------|----------|----|
| #      | D | с | E | С | е | f | к | k | K<br>p<br>a | K<br>p<br>b | J<br>s<br>a | J<br>s<br>b | F<br>y<br>a | F<br>y<br>b | J<br>k<br>a | J<br>k<br>b | L<br>e<br>a | L<br>e<br>b | P<br>1   | М  | N | S | S | U<br>N<br>Rx |    | Un<br>Rx |        | Un<br>Rx |    |
| 1      | + | 0 | + | + | 0 | 0 | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | 0        | +  | 0 | + | 0 | 2+           |    | 2+       |        | 2+       |    |
| 2      | + | + | + | + | 0 | 0 | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | +        | 0  | + | 0 | + | 2+           |    | 2+       |        | 2+       |    |
| 3      | 0 | + | 0 | 0 | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | +        | 0  | + | 0 | + | 2+           |    | 2+       |        | 2+       |    |
| 4      | 0 | 0 | + | + | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | +           | 0           | +        | +  | + | + | + | 2+           |    | 2+       |        | 2+       |    |
| 5      | 0 | 0 | 0 | + | + | + | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | 0           | +           | 0           | +        | 0  | + | 0 | + | 2+           |    | 2+       |        | 2+       |    |
| A<br>C |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |          |    |   |   |   |              |    |          |        |          |    |
|        |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             | П           |             | <b>.</b> | α. | E | - | - | . 17         | E( | 1.)      | T1_(]_ | ) NT     | ~  |

R1 D+ C+ E- c- e+ K- Fy(b-) Jk(b-) N- s-R2 D+ C- E+ c+ e- K-Fy(b-) Jk(a-) M- Srr D- C- E- c+ e+ K- Fy(a-) M- S-



## Finally, Previous History.....

Anti-LW

—non-reactive with DTT treated RBCs and auto adsorbed with no reactivity remaining

- No history of Rhlg, IVIg or WinRho treatment
- Now what? Some choices....

—DTT treat RBCs and test with Adsorbed Sera? —PEG adsorption?



# Allo - Adsorbed Sera Panel: Neat and DTT Treated RBCs

|        |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   | R1 /         | Ads                   | R2 a     | ads               | rr /     | ads               |
|--------|---|---|---|---|---|---|---|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|---|---|---|---|--------------|-----------------------|----------|-------------------|----------|-------------------|
| #      | D | С | Е | С | е | f | к | k | K<br>p<br>a | K<br>p<br>b | J<br>s<br>a | J<br>s<br>b | F<br>y<br>a | F<br>y<br>b | J<br>k<br>a | J<br>k<br>b | L<br>e<br>a | L<br>e<br>b | P<br>1 | М | N | S | s | U<br>N<br>Rx | D<br>T<br>T<br>R<br>x | Un<br>Rx | D<br>T<br>T<br>Rx | Un<br>Rx | D<br>T<br>T<br>Rx |
| 1      | + | 0 | + | + | 0 | 0 | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | 0      | + | 0 | + | 0 | 2+           | <b>0</b> √            | 2+       | 0√                | 2+       | 2+                |
| 2      | + | + | + | + | 0 | 0 | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | +      | 0 | + | 0 | + | 2+           | <b>0</b> √            | 2+       | 0√                | 2+       | 2+                |
| 3      | 0 | + | 0 | 0 | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | +      | 0 | + | 0 | + | 2+           | <b>0</b> √            | 2+       | 0√                | 2+       | 0√                |
| 4      | 0 | 0 | + | + | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | +           | 0           | +      | + | + | + | + | 2+           | <b>0</b> √            | 2+       | 0√                | 2+       | <b>0</b> √        |
| 5      | 0 | 0 | 0 | + | + | + | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | 0           | +           | 0           | +      | 0 | + | 0 | + | 2+           | <b>0</b> √            | 2+       | 0√                | 2+       | <b>0</b> √        |
| A<br>C |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   |              |                       |          |                   |          |                   |

DTT Sensitive Reactivity and Anti- D??? WOW – did not see that coming! R1 D+ C+ E- c- e+ K- Fy(b-) Jk(b-) N- s-R2 D+ C- E+ c+ e- K-Fy(b-) Jk(a-) M- Srr D- C- E- c+ e+ K- Fy(a-) M- S-



### **Case #2: Further Testing**

|   |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   |           | PEG                                   | $\wedge$     |
|---|---|---|---|---|---|---|---|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|---|---|---|---|-----------|---------------------------------------|--------------|
| # | D | С | E | С | e | f | к | k | K<br>p<br>a | K<br>p<br>b | J<br>s<br>a | J<br>s<br>b | F<br>y<br>a | F<br>y<br>b | J<br>k<br>a | J<br>k<br>b | L<br>e<br>a | L<br>e<br>b | P<br>1 | Μ | N | S | S | rr<br>Ads | rr<br>Ads<br>DTT<br>PEG<br>IgG<br>AHG | Eluate       |
| 1 | + | + | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | +           | 0           | +           | 0      | + | 0 | + | 0 | 2+        | 1+                                    | 1+           |
| 2 | + | + | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | +           | 0           | +      | + | + | 0 | + | 2+        | 1+                                    | 1+           |
| 3 | + | 0 | + | + | 0 | 0 | 0 | + | 0           | +           | 0           | +           | +           | 0           | 0           | +           | +           | 0           | +      | 0 | + | 0 | + | 2+        | 1+                                    | 1+           |
| 4 | 0 | 0 | 0 | + | + | + | 0 | + | 0           | +           | 0           | +           | +           | +           | +           | 0           | +           | 0           | +      | + | + | 0 | 0 | 2+        | <b>0</b> √                            | <b>0</b> √   |
| 5 | 0 | 0 | 0 | + | + | + | + | + | 0           | +           | 0           | +           | +           | 0           | +           | 0           | 0           | +           | +      | 0 | + | 0 | + | 2+        | <b>0</b> √                            | <b>0</b> √   |
| 6 | 0 | 0 | 0 | + | + | + | 0 | + | 0           | +           | 0           | +           | 0           | +           | +           | 0           | 0           | +           | 0      | + | + | + | + | 2+        | <b>0</b> √                            | <b>0</b> √   |
|   |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   |           |                                       | $\mathbf{V}$ |



### PEG Adsorptions: Advantages

- Shorter incubation times
- Fewer adsorptions needed

### **PEG Adsorptions: Concerns**

- Loss of alloantibody activity
- Untreated RBCs do not pack as efficiently which may result in dilution of serum
- Correct serum to PEG to red blood cell ratio is needed to prevent precipitation and PEG concentrations differ between manufacturers



### **PEG Adsorption Summary**

|                  | Number<br>allo<br>antibodies<br>(ABY)<br>studied | Number<br>ABY missed<br>in PEG<br>adsorption | Number ABY<br>missed in<br>other<br>adsorption | Significant<br>loss of ABY<br>reactivity | Same<br>ABY<br>reactivity | Comment                                             |
|------------------|--------------------------------------------------|----------------------------------------------|------------------------------------------------|------------------------------------------|---------------------------|-----------------------------------------------------|
| Leger (1)        | 10                                               | 0                                            | 0                                              | 0                                        | 10                        |                                                     |
| Cheng (2)        | 1                                                | 0                                            | 0                                              | Not Mentioned                            |                           |                                                     |
| Barron (3)       | 14                                               | 2                                            | 0                                              | 4                                        | 13                        |                                                     |
| Judd (4)         | 11                                               | 1                                            | 0                                              | 4                                        |                           | Titers of 6 aby<br>markedly<br>weaker in<br>PEG ads |
| Combs (5)        | 107                                              | 9                                            | 0                                              | 15                                       | 54                        |                                                     |
| Champag<br>ne(6) | 2                                                | 2 (with 2<br>drops)                          | 0                                              | 1 (with 4<br>drops)                      | 0                         |                                                     |
| Dec (0)          | 7                                                | 0                                            | 0                                              | 0                                        | 7                         |                                                     |
| Total            | 152                                              | 14 (9%)                                      | 0                                              | 24(16%)                                  | 84 (55%)                  |                                                     |



### References

1. Leger RM, Garratty G. Evaluation of methods for detecting alloantibodies underlying warm autoantibodies. Transfusion 1999;39:11-6.

2. Cheng CK, Wong ML, Lee AW. PEG adsorption of autoantibodies and detection of alloantibodies in warm autoimmune hemolytic anemia. Transfusion 2001;41:13-

3. Barron CL, Brown MB. The use of polyethylene glycol (PEG) to enhance the adsorption of autoantibodies. Immunohematology 1997;13:119-22.

4. Judd WJ, Dake L. PEG adsorption of autoantibodies causes loss of concomitant alloantibody. Immunohematology2001;17:82-5.

5. Combs MR, Eveland D, Jewet-Keefe B, Telen MJ. The use of polyethylene glycol in adsorptions: more evidence that antibodies may be missed. Paper presented at: AABB Annual Meeting 2001. San Antonio, TX; Transfusion 2001;41(Suppl):30S.

6. Champagne K, Moulds MK. Autoadsorptions for the detection of alloantibodies should polyethylene glycol be used? Transfusion 1996;36:384.

7.Leger RM, Ciesielski D, Garratty G. Effect of storage on antibody reactivity after adsorption in the presence of polyethylene glycol. Transfusion 1999;39:1272-3.

8. Das SS, Chaudhary R. Utility of adsorption techniques in serological evaluation of warm autoimmune hemolytic anemia. Blood Transfus. 2009 Oct; 7(4):300-4.

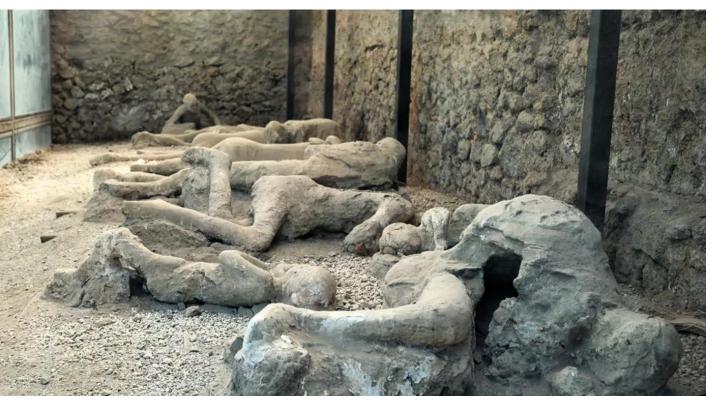


### What RBCs to Recommend for Transfusion

- D negative
- Unknown if allo or auto anti-D

Michelangelo's Tomb at Basilica of Santa Croce. Florence, Italy This tomb is ornamented with lamenting angels and a bust of Michelangelo.






# Summary of Crypt Case #2

- Should have been easy, given history of anti-LW
  - —And would have been terrific to know in advance
- BUT, reactivity was different in sample
- Since autoadsorption did not remove, (although did not have enough autologous RBCs to do PEG autoadsorption): there is a risk of adsorption of antibody to high prevalence antigen
- Recommend molecular testing for RHD variants



## Crypt Case #3



When you think of Pompeii, you think of the massive eruption in 79 CE and subsequent mass killing of the Romans who inhabited Pompeii and Herculaneum. You may picture the eerie casts that lay around the streets of Pompeii and the faces of those who perished in the fires of Vesuvius. National Geographic



American Red Cross

### **Patient History**

- 64 year old male
- Coronary artery disease
- Possible Cath Lab procedure- awaiting surgery Italian descent



National Geographic cast from Pompeii



# **Laboratory Findings**

### • O+

- Hgb: 11.7 gm/dL
- Panagglutinin on screen and panel
- Negative autocontrol noted
- Called floor for transfusion history
  - -Received plasma 10 years ago

—No transfusions within 3 months, but unable to get clear history of red cell transfusion



## **Medications**

Allopurinol (zyloprim) Aspirin Atorvastatin (Lipitor) Famotidine (Pepcid) Heparin Insulin Isosorbide mononitrate KCL Magnesium oxide Metroprolol (Lopressor) Morphine Oxycodone (OxyContin) Torsemide (Demedex) Docusate sodium (Colace) Oxycodone/APAP (Percocet)



### IRL Testing – First IRL's Initial Assessment

ABO/Rh: O+ RH typing: C+ E- c+ e+ C typing +w/4+ AND c typing 1+/4+ DAT: Negative with polyspecific, anti-IgG, and anti-C3, control negative Antibody Panel: AHG phase only with Anti-IgG: 1+ in Alb, 2+ in PEG, 2+ in ficin, 1+ in Gel, 1-2+ in LISS with reagent RBCs negative autocontrol



## **First IRL Tested:**

Serum with the following

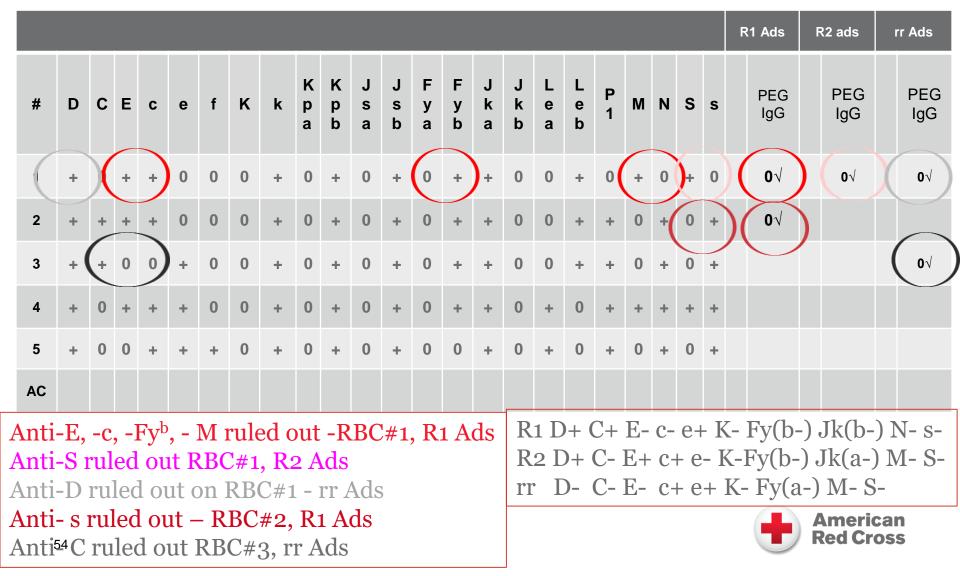
Patient's RBCs with antisera to the following antigens:

At<sup>a</sup>, Sc1, Er<sup>a</sup>, Cr<sup>a</sup>

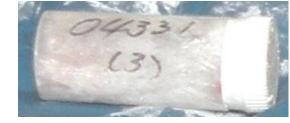
k-, Lu(a+b-), Js(a+b-), Vel-, Co(a-b+), Yt(a-), Cs(a-), Yk(a-), Lu(a-b-), Di(b-), LAN-, Ge:-2 -3, Kp(a+b-), Rg-, AnWj-, Ko

Antibody reacted to a dilution of 128 All antibodies to common antigens ruled out with alloadsorbed serum




**RBCs**:

## **NRLBGS** Testing


- Reviewed the testing worksheets from referring IRL
- Confirmed negative DAT
- Rule out allo-antibodies first



# Adsorbed Sera Panel: Critical to rule out antibodies to common antigens first



# What is it? RBC Library Time





# Liquid Nitrogen storage of very small aliquots of rare RBCs



Joan Maurer, SBB, Lead, American Rare Donor Program



### **Case #3: RBC Library Time**

|    |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   |        | PEG               |  |
|----|---|---|---|---|---|---|---|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|---|---|---|---|--------|-------------------|--|
| #  | D | С | E | с | e | f | к | k | K<br>p<br>a | K<br>p<br>b | J<br>s<br>a | J<br>s<br>b | F<br>y<br>a | F<br>y<br>b | J<br>k<br>a | J<br>k<br>b | L<br>e<br>a | L<br>e<br>b | P<br>1 | М | N | S | S |        | PEG<br>IgG<br>AHG |  |
| 1  | + | 0 | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | +           | 0           | +           | 0      | + | 0 | + | 0 |        | 1+                |  |
| 2  | + | 0 | 0 | + | + | 0 | 0 | + | 0           | +           | +           | 0           | 0           | 0           | +           | 0           | 0           | +           | +      | + | + | 0 | + |        | 1+                |  |
| 3  | + | 0 | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | 0           | 0           | +           | 0           | 0           | +      | 0 | + | 0 | + |        | 1+                |  |
| 4  | + | 0 | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | 0           | 0           | 0           | 0           | 0           | +      | + | + | 0 | 0 | Jr(a-) | <b>0</b> √        |  |
| 5  | 0 | 0 | 0 | + | + | 0 | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | 0           | 0           | +           | +      | 0 | + | 0 | + | Jr(a-) | <b>0</b> √        |  |
| 6  | 0 | 0 | 0 | + | + | + | 0 | + | 0           | +           | 0           | +           | 0           | 0           | +           | 0           | 0           | +           | 0      | + | + | + | + | Jr(a-) | <b>0</b> √        |  |
| AC |   |   |   |   |   |   |   |   |             |             |             |             |             |             |             |             |             |             |        |   |   |   |   |        | <b>0</b> √        |  |

Anti- Jr<sup>a</sup>!, Pt RBCs Jr(a-)



## Monocyte Monolayer Assay Data NRLBGS 1995-2017

| Anti-           | TT | POS | NEG | Anti-                   | TT  | POS | NEG |
|-----------------|----|-----|-----|-------------------------|-----|-----|-----|
| AnWj            | 2  | 1   | 1   | Js <sup>b</sup>         | 1   | 1   | 0   |
| At <sup>a</sup> | 4  | 3   | 1   | Kp <sup>b</sup>         | 6   | 2   | 4   |
| Au <sup>a</sup> | 1  | 0   | 1   | Ku                      | 1   | 1   | 0   |
| Co <sup>a</sup> | 2  | 2   | 0   | Lan                     | 11  | 7   | 4   |
| Cr <sup>a</sup> | 4  | 4   | 0   | LU Sys                  | 21  | 19  | 2   |
| Di <sup>b</sup> | 11 | 8   | 3   | Lu <sup>b</sup>         | 14  | 12  | 2   |
| Dob             | 5  | 1   | 4   | Lw                      | 3   | 2   | 1   |
| E               | 1  | 1   | 0   | Μ                       | 11  | 5   | 6   |
| е               | 3  | 2   | 1   | Ν                       | 2   | 1   | 1   |
| GE Sys          | 31 | 16  | 15  | PP1P <sup>k</sup>       | 1   | 1   | 0   |
| hr <sup>B</sup> | 3  | 2   | 1   | RH Sys                  | 1   | 1   | 0   |
| hr <sup>s</sup> | 7  | 4   | 3   | S                       | 1   | 0   | 1   |
| Ну              | 9  | 7   | 2   | Sc1                     | 1   | 1   | 0   |
|                 | 5  | 1   | 4   | Tc <sup>a</sup>         | 2   | 1   | 1   |
| Jk3             | 1  | 0   | 1   | U                       | 4   | 2   | 2   |
| .loa            | 10 | 4   | 6   | Vel                     | 13  | 10  | 3   |
| Jr <sup>a</sup> | 15 | 9   | 6   | <b>Y</b> t <sup>a</sup> | 195 | 119 | 76  |

<sup>57</sup> Maurer J, Nance S, Nickle P. Monocyte Monolayer Assay (MMA) to Predict Clinical Significance of Alloantibodies: a 22 year Review. AABB Abstract 2018



## What is the Scary Thing Here?

- Need to be able to have the library of RBCS and antisera to test in order to find the specificity
- AABB IRLs have a required inventory of rare RBCs and antisera to be accredited

| ł    | Referen        | System Collection      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | ory Resources     | -                  | Reference S<br>(Continued)     | itandard 2.28                          | Additiona      | I Inventory        | Resources         |                    |      |
|------|----------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|--------------------|--------------------------------|----------------------------------------|----------------|--------------------|-------------------|--------------------|------|
| n.   | is81<br>Symbol | No./Antigu             | n<br>en<br>Antisera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No. of<br>Examples | RBCs              | No. of<br>Examples |                                | System or<br>Collection<br>No./Antigen |                |                    | -                 | 1                  |      |
| 1    | MNS            | 002/006                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  | He+<br>Mg+        | 1                  | ISBT<br>Symbol                 | No./ Anugen<br>No.                     | Antisera       | No. of<br>Examples | RBCs              | No. of<br>Examples |      |
|      | 1211           | 004 / 005              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  | Rh <sub>not</sub> | i                  | CROM                           | 021/001                                | Cra            | -                  | Cr(a-)            |                    | N .  |
|      |                | 004/006                | Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  |                   |                    | KN                             | 022                                    |                |                    | Heigeson          | 1                  | 1000 |
|      |                | 004/010                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | V+<br>G           | 1                  | 100                            | 022/001                                | Koz            | -                  | phenotype         |                    |      |
|      |                | 004/012                | G<br>VS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | VS+               | 1                  | and the local diversion of the | 022/003                                | McCa           | -                  | Kn(a-)<br>McC(a-) | 10                 |      |
|      |                | 004/030                | Gall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | Go(a+)            | 1                  |                                | 022 / 004                              | SI1            | i                  | Sli-1             | 1                  |      |
|      |                | 004/032                | Rh32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                  | Rh:32             | 2                  |                                | 022 / 005                              | Yk®            | 1                  | Yk(a-)            | 1                  |      |
|      |                | 004/037                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | D- or D-          | 1                  | JMH                            | 026 / 001                              | JMH            | 1                  | JMH-              | 0 2                |      |
| 11   |                | 005 / 006<br>005 / 008 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Lui-6<br>Lui-8    | 1                  | GLOB                           | 028 / 001                              | P              | 1                  | P-                | 1                  |      |
| KEL  |                | 005 / 006              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  |                   | 1                  | COST                           | 205 / 001                              | Cs#            | 1                  | Csta-)            | 2                  |      |
| EN   |                | 100/001                | DP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  |                   |                    | 1000                           | 207 / 002                              | 1              | 1                  |                   |                    |      |
| UN.  |                | 10/003                 | Wra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  |                   |                    | LAN                            | 033 / 001                              | Lan            | 1                  | Lan-              | 2                  |      |
| YT   | 0              | 11/002                 | Ytb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  |                   |                    | AUG                            | 036/002                                | AUG2           | 1                  | AUG:-2            | 2                  |      |
| XG   |                | 2/001                  | Xg <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  |                   |                    | JR                             | 032 / 001                              | jrª            | and in the         | J((a-)            | 2                  |      |
| SC   |                | 3/001                  | Sc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i                  | Scr-1             | 2                  | AnWj                           | 901 / 009                              | AnW)           | 1                  | AnWj-             | 2                  |      |
|      |                | 3/002                  | Sc2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  |                   |                    | Sd <sup>a</sup>                | 901/012                                | Sdª            | 1                  | Sd(a-             | ) 2                |      |
| DO   |                | 1/003                  | Gya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  |                   |                    |                                |                                        |                |                    |                   |                    |      |
|      |                | /004                   | Hy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  | Hy-               | 1                  | Other Resol                    | urces                                  | and the second | Name               |                   |                    | -    |
|      |                | / 005                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Jo(a-)            | 1                  | Enzyme                         | No. of Concession, Name                |                | Trypsin            | And the second    |                    |      |
| co   |                | / 003                  | and the second se |                    | Co(a-b-)          | 1                  | Linghow                        |                                        |                | a-chym             |                   |                    |      |
| W    |                |                        | LWap.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | LW(a-b-)          | 1                  |                                |                                        |                | Pronase            |                   |                    |      |
| -    | 016/           |                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | LW(a-b+)          | 1                  | Enhanceme                      | nt media                               |                | Polybre            | ine               |                    |      |
| G    | 01             |                        | Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  | Ch-               | 1                  | Other                          |                                        |                |                    | ntibodies         |                    |      |
| Ê. V |                |                        | Rg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  | Rg-               | 1                  |                                |                                        |                | Drug-t             | reated red cell   | 5                  |      |
|      | 020 /          |                        | Ge2<br>Ge3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                  | Ge:-2,3           | 1                  | 1.00                           |                                        |                | Rabbit             | anti-IgG          |                    |      |
|      |                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |                    |                                |                                        |                |                    |                   |                    |      |

Almost as scary as a crypt!!!



2.75

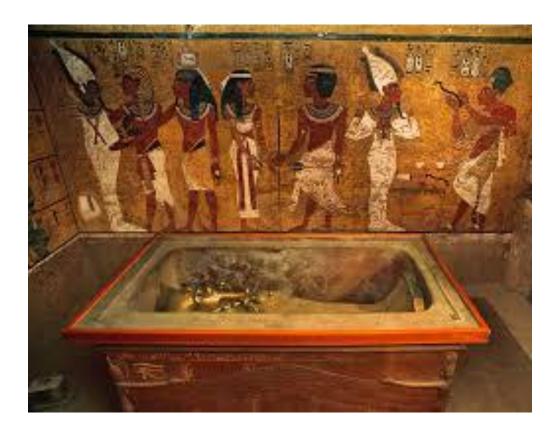
| 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Additional Inve                                                                                                 | ntory Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| unce Standard 2.28.                     | The second se | Construction of the local division of the lo |

|      | MRT<br>Speebol | Syster<br>Collect<br>No./An<br>No. | gian .     | Autoors         | No. of<br>Example |              | No. of<br>Examples |
|------|----------------|------------------------------------|------------|-----------------|-------------------|--------------|--------------------|
| 1    | MNI            | 002/0                              | 06<br>11   | HP<br>Mg        | 1                 | He-<br>Mg+   | ÷                  |
|      | 81             | 004/0<br>004/0<br>004/0            | 05<br>Mé   | 1               | 1                 | ~            | de la              |
|      |                | 204/01                             | 0.         | Y.              | T                 | ¥+<br> G     | 1                  |
|      |                | 004/07                             | 7          | G               | - 10 A            | VS+          | 1                  |
|      |                | 001/03                             | £          | Go <sup>1</sup> | 10                | Go(a+)       | 1                  |
|      |                | 004/033                            | 10         | Rh37            | 1                 | Rb-32        |                    |
|      |                | 004 / 037                          |            |                 |                   | D- or D-     | 5 1                |
| ш    | (              | 005/006<br>005/008                 |            |                 |                   | Lu-6<br>Lu-8 | 1                  |
| NEL. |                | 06/006                             |            | 判               | 1                 |              |                    |
| DI   | 0              | 10/601                             |            | DI              |                   |              |                    |
|      |                | 10/003                             |            | WP              |                   |              |                    |
| T    |                | 1/002                              |            | N.              | 12                |              |                    |
| 10   |                | 2/001                              |            | 6               | 12                |              |                    |
| £    |                | 1/001<br>/002                      |            | e1<br>c2        | 1                 | Sc-1         | 2                  |
| 00   | 014            | 1003                               |            | yê.             | 1                 |              |                    |
|      | 034            | /004                               | H          | French          | 1                 | Hys          | 71                 |
|      |                | / 005                              |            |                 |                   | 1068-7       | 1                  |
| 0    |                | /063                               |            |                 |                   | Co(a-b-)     | 1                  |
| ¥.5  | 016/           | 006.<br>007                        | EW         |                 | 1                 | LW(a-b-)     | 1                  |
|      | 01             | 7-                                 | Ch         |                 | 1                 | Ch-          | 4                  |
|      | 017/           |                                    | RE         |                 | 1                 | Rg-          | 1                  |
|      | 020/0          |                                    | Gez<br>Gez |                 | 1                 | Ge-2,3       | 4                  |

|   | No. of<br>Econyles | -                  | No. of<br>Examples | Antinera           | System or<br>Collection<br>No./Antigen<br>No. | sat<br>mbol |
|---|--------------------|--------------------|--------------------|--------------------|-----------------------------------------------|-------------|
| - |                    | -                  | 14                 | 0*                 | 021/001                                       | ROM         |
|   | 1                  | Cr(a-3<br>Helgenon |                    |                    | 072                                           | iN          |
|   |                    | showkype .         | - 63               | Key <sup>a</sup> . | 022/001                                       |             |
|   | 1                  | MOCTA-)            | t                  | McC <sup>o</sup>   | 022/003                                       |             |
|   | 1                  | 21                 | 1                  | 81                 | 022/004                                       |             |
|   | 1                  | Yola-1             | 1                  | Yke                | 022 / 005                                     |             |
|   | 2                  | MI                 |                    | MH                 | 026/001                                       | MIC         |
|   | 4                  | P                  |                    | 183                | 628/001                                       | 108         |
|   | 1.3                | Citi-1             | 1                  | Cla                | 205/001                                       | teo:        |
|   | - C.ª              | A MARKET           | 1                  | 1. K.              | 207/002                                       | 1           |
|   |                    | Line .             | 1                  | tan                | 033/001                                       | IN          |
| 1 |                    | NUG-1              | 1                  | NAGE               | 036/002                                       | 10,03       |
| - |                    | 360-3              | - 13 -             | R                  | 032/001                                       | JR.         |
| - |                    | - Sal              | 1                  | Anna               | BOX / 002                                     | Arity I     |
|   | 1 A                | Sala               | 1                  | Set                | 901/012                                       | sď          |

| ther Resources   | Name                                                         |  |
|------------------|--------------------------------------------------------------|--|
| uyine .          | Trypsin<br>uchymotrypsin<br>Procese                          |  |
| iturcement media | Polybrane                                                    |  |
| aber             | Drug antibodies<br>Drug treated red cells<br>Rabbit anti-tgG |  |

### Effect of Enzymes and DTT (Dithiothreitol) on Antigens in Antibody Identification


Possible antibody specificity is based on *general* patterns of reactions against enzyme and DTTtreated (200mM) RBCs (assuming no anti-enzyme is present or an eluate is used).

| Ficin/Papain                           | Trypsin  | a-chymotrypsin | DTT (200mM) | Possible specificity                                                                                                                                                                                                                      |
|----------------------------------------|----------|----------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Neg                                    | Neg      | Neg            | Pos         | Bp <sup>a</sup> ; Ch/Rg; Xg                                                                                                                                                                                                               |
| Neg                                    | Neg      | Neg            | Neg         | Indian; JMH                                                                                                                                                                                                                               |
| Neg                                    | Neg      | Pos            | Pos         | M, N, En <sup>a</sup> TS; Ge2, Ge4                                                                                                                                                                                                        |
| Neg                                    | Pos      | Neg            | Pos         | 'N'; Fy <sup>a</sup> , Fy <sup>b</sup>                                                                                                                                                                                                    |
| Variable                               | Pos      | Neg            | Pos         | S, s                                                                                                                                                                                                                                      |
| Variable                               | Pos      | Neg            | Weak or Neg | Yt                                                                                                                                                                                                                                        |
| Neg                                    | Pos      | Pos            | Pos         | En <sup>a</sup> FS                                                                                                                                                                                                                        |
| Pos                                    | Neg      | Neg            | Weak or Neg | Lutheran; MER2                                                                                                                                                                                                                            |
| Pos - Papain<br>Weak or neg -<br>Ficin | Neg      | Neg            | Neg         | Knops                                                                                                                                                                                                                                     |
| Pos                                    | Neg      | Weak           | Neg         | Dombrock                                                                                                                                                                                                                                  |
| Pos                                    | Pos      | Neg            | Weak        | Cromer                                                                                                                                                                                                                                    |
| Pos                                    | Pos      | Neg            | Pos         | Some Diego (on 3 <sup>rd</sup> loop)                                                                                                                                                                                                      |
| Pos                                    | Pos      | Pos/Weak       | Neg         | LW                                                                                                                                                                                                                                        |
| Pos                                    | Pos/Weak | Pos/Weak       | Pos         | Scianna                                                                                                                                                                                                                                   |
| Pos                                    | Pos      | Pos            | Neg         | Kell (but KALT & KYOR are trypsin sensitive)                                                                                                                                                                                              |
| Pos                                    | Pos      | Pos            | Enhanced    | Kx                                                                                                                                                                                                                                        |
| Pos                                    | Pos      | Pos            | Pos         | ABO; En <sup>a</sup> FR, U; PP1P <sup>k</sup> ; RH; Lewis; Py3, 11 kl;<br>most Diego; Colton; H; Ge3; OK; I/i; P, FORS;<br>JR; LAN; Cs <sup>a</sup> ; ER; LKE, PX2; VEL; At <sup>a</sup> ; Emm;<br>AnWj; Sd <sup>a</sup> ; PEL; MAM; ABTI |

Courtesy of Christine Lomas-Francis Immunohematology 2018, in press



### **Case #4: Amazing Serological Work**



#### National Geographic

King Tutankhamun, like all prominent ancient Egyptians, hoped that people would remember him forever, calling out his name into eternity. But even in his wildest fantasies, the teenage ruler could never have imagined that he would become the rock star of the pharaohs. Since British archaeologist Howard Carter discovered his tomb in 1922, countless thousands of tourists have come to visit, descending a flight of stairs and a sharply sloping corridor to arrive at the painted burial chamber.



### **Case #4 Clinical History**

- 59 year old Caucasian male
- Admitted through Emergency Department
- Symptoms included:
- Shortness of breath
- Fatigue
- No previous history of hospitalization
- Patient states no transfusions, ever



### **Case #4 – Laboratory Values**

| Laboratory<br>Parameter | Patient's<br>Value | Normal Range    |
|-------------------------|--------------------|-----------------|
| Hemoglobin              | 5.4 g/dL           | 11.1- 15.9 g/dL |
| Reticulocyte<br>Count   | 5%                 | 0.5-2.5%        |
| Bilirubin (Total)       | 2.5 mg/dL          | 0-1.2 mg/dL     |





### **Case #4 – Hospital Testing**

Automated Gel testing:

- Antibody Screen:
  - 1+ with all three antibody screening RBCs
- Gel antibody identification panel:
  - 3 RBCs negative
  - 8 RBCs positive: wk+ to 1+
  - Autocontrol: negative
- 2<sup>nd</sup> Gel antibody identification panel:
  - 2 RBCs negative
  - 9 RBCs positive: wk+ to 1+
  - Autocontrol: negative



### Case #4 – Hospital Testing Interpretations

ABO/Rh: A positive

DAT: negative with anti-IgG in Gel DAT
 Antibody Screen Method: Gel Test
 Antibody Screen Results: Positive
 Antibody Identification Method: Gel Test
 Antibody Identification initial testing:
 No specificity identified by reactivity



### Case #4 – Challenges with Current Testing at Hospital

The hospital has automated Gel testing only, and performs antibody screen and has purchased 2 panels for Gel testing only

The hospital has no other identification methods or panels, and refers the sample to their blood center IRL

The physicians in charge of the patient manage the patient medically, awaiting antibody identification for compatible blood



### **Case #4– IRL Initial Testing**

ABO/Rh: A+

- DAT: negative with polyspecific AHG, anti-IgG, anti-C3 and control
- Rh Phenotype: D+ C+ E- c+ e+
  - noted that C typing 1+ at Immediate Spin and 4+ after incubation



### **Case #4 – Further Work in IRL**

IRL Technologist evaluates the hospital information, sees no discernable specificity in Gel panels, decides to perform tube testing in PEG (similar sensitivity\*)

|     | D | С | С | E | е | К | k | Крª | Крь | Jsª | Js <sup>b</sup> | Jkª | JkÞ | Fyª | Fyb | P1 | Leª | Le⁵ | м | Ν | S | s | PEG |           |
|-----|---|---|---|---|---|---|---|-----|-----|-----|-----------------|-----|-----|-----|-----|----|-----|-----|---|---|---|---|-----|-----------|
| 1   | + | + | 0 | 0 | + | 0 | + | 0   | +   | +   | +               | +   | +   | 0   | 0   | +  | 0   | +   | + | 0 | + | 0 | 1+  | $\square$ |
| 2   | + | + | 0 | 0 | + | 0 | + | 0   | +   | 0   | +               | +   | 0   | +   | +   | +  | +   | 0   | + | 0 | + | 0 | 2+  |           |
| 3   | + | 0 | + | + | 0 | 0 | + | 0   | +   | 0   | +               | +   | 0   | 0   | +   | 0  | 0   | +   | + | 0 | 0 | + | 2+  |           |
| 4   | 0 | + | + | 0 | + | 0 | + | 0   | +   | 0   | +               | +   | +   | 0   | +   | 0  | 0   | +   | + | + | + | + | 2+  |           |
| 5   | + | 0 | + | 0 | + | 0 | + | 0   | +   | 0   | +               | 0   | +   | 0   | 0   | +  | 0   | 0   | 0 | + | 0 | + | 2+  |           |
| 6   | 0 | 0 | + | + | + | 0 | + | 0   | +   | 0   | +               | 0   | +   | +   | +   | +  | 0   | +   | 0 | + | 0 | + | 2+  |           |
| 7   | 0 | 0 | + | 0 | + | + | 0 | 0   | +   | 0   | +               | +   | +   | +   | +   | +  | 0   | +   | 0 | + | 0 | + | 2+  |           |
| 8   | 0 | 0 | + | 0 | + | 0 | + | 0   | +   | 0   | +               | +   | 0   | +   | 0   | +  | 0   | +   | + | + | + | 0 | 2+  |           |
| 9   | 0 | 0 | + | 0 | + | 0 | + | 0   | +   | 0   | +               | +   | +   | 0   | +   | +  | +   | 0   | + | + | + | + | 2+  |           |
| 10  | 0 | 0 | + | 0 | + | + | + | 0   | +   | 0   | +               | +   | +   | +   | 0   | +  | 0   | +   | + | + | + | + | 2+  |           |
| A/C |   |   |   |   |   |   |   |     |     |     |                 |     |     |     |     |    |     |     |   |   |   |   | 2+  |           |

\*PEG – Polyethylene Glycol at antiglobulin phase with Anti-IgG



### Case #4 – Evaluate IRL Panel

IRL Technologist performs tube test to determine the reactivity in other methods

- To establish that testing can be in PEG, since Gel testing requires specially prepared panel RBCs
- PEG panel showed slightly stronger reactivity (2+)
- One panel cell slightly weaker at 1+
- Autocontrol positive in PEG 2+ at AHG
  - Shows importance of performing autocontrol with each method tested



### **Case #4 – Further Work – Notable Points**

#1 RBC was 1+ vs. rest of panel 2+, may or may not be significant as was not a difference of 2 grades. Autocontrol 2+, and DAT was negative!

|     | D | С | с | E | е | к | k | Kpª | Крь | Jsª | Js <sup>b</sup> | Jkª | Jk | Fyª | Fyb | P1 | Leª | Le <sup>b</sup> | М | N | S | s | I | PEG |
|-----|---|---|---|---|---|---|---|-----|-----|-----|-----------------|-----|----|-----|-----|----|-----|-----------------|---|---|---|---|---|-----|
|     |   |   |   |   |   |   |   |     |     |     |                 |     |    |     |     |    |     |                 |   |   |   |   |   |     |
| 1   | + | + | 0 | 0 | + | 0 | + | 0   | +   | +   | +               | +   | +  | 0   | 0   | +  | 0   | +               | + | 0 | + | 0 |   | 1+  |
| 2   | + | + | 0 | 0 | + | 0 | + | 0   | +   | 0   | +               | +   | 0  | +   | +   | +  | +   | 0               | + | 0 | + | 0 |   | 2+  |
| 3   | + | 0 | + | + | 0 | 0 | + | 0   | +   | 0   | +               | +   | 0  | 0   | +   | 0  | 0   | +               | + | 0 | 0 | + |   | 2+  |
| 4   | 0 | + | + | 0 | + | 0 | + | 0   | +   | 0   | +               | +   | +  | 0   | +   | 0  | 0   | +               | + | + | + | + | : | 2+  |
| 5   | + | 0 | + | 0 | + | 0 | + | 0   | +   | 0   | +               | 0   | +  | 0   | 0   | +  | 0   | 0               | 0 | + | 0 | + | : | 2+  |
| 6   | 0 | 0 | + | + | + | 0 | + | 0   | +   | 0   | +               | 0   | +  | +   | +   | +  | 0   | +               | 0 | + | 0 | + | : | 2+  |
| 7   | 0 | 0 | + | 0 | + | + | 0 | 0   | +   | 0   | +               | +   | +  | +   | +   | +  | 0   | +               | 0 | + | 0 | + | : | 2+  |
| 8   | 0 | 0 | + | 0 | + | 0 | + | 0   | +   | 0   | +               | +   | 0  | +   | 0   | +  | 0   | +               | + | + | + | 0 |   | 2+  |
| 9   | 0 | 0 | + | 0 | + | 0 | + | 0   | +   | 0   | +               | +   | +  | 0   | +   | +  | +   | 0               | + | + | + | + |   | 2+  |
| 10  | 0 | 0 | + | 0 | + | + | + | 0   | +   | 0   | +               | +   | +  | +   | 0   | +  | 0   | +               | + | + | + | + | i | 2+  |
| A/C |   |   |   |   |   |   |   |     |     |     |                 |     |    |     |     |    |     |                 |   |   |   |   |   | 2+  |

\*PEG – Polyethylene Glycol at antiglobulin phase with Anti-IgG



### Case #4 - Is this Antibody to High Prevalence Antigen or Autoantibody? Further Testing:

- Sent sample for molecular testing for predicted phenotype of common and some high prevalence antigens
- What if it is an antibody to High Prevalence antigen and DAT result is correct?
  - Allogeneic adsorption to rule out underlying antibodies to common antigens which could complicate interpretation of testing with rare reagent RBCs, if present



### Case #4 - Allogeneic Adsorption-No antibodies to common antigens!

|        |                                                                                                                                                                                                                                                                                                                 |   |   |   |   |   |   |   |             |             |             |                       |             |             |             |             |             |             |        |   |   |   |   | R1 Ads     | R2 Ads     | rr Ac's    |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|-------------|-------------|-------------|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|---|---|---|---|------------|------------|------------|
| #      | D                                                                                                                                                                                                                                                                                                               | С | E | с | е | f | к | k | K<br>p<br>a | K<br>p<br>b | J<br>s<br>a | J<br>s<br>b           | F<br>y<br>a | F<br>y<br>b | J<br>k<br>a | J<br>k<br>b | L<br>e<br>a | L<br>e<br>b | Р<br>1 | м | N | s | S | PEG<br>IgG | PEG<br>IgG | PEG<br>IgG |
| 1      | +                                                                                                                                                                                                                                                                                                               | + | 0 | 0 | + | 0 | 0 | + | 0           | +           | 0           | +                     | +           | 0           | +           | 0           | 0           | 0           | +      | + | + | + | 0 | 0√         | <b>0</b> √ | <b>0</b> √ |
| 2      | +                                                                                                                                                                                                                                                                                                               | + | + | + | 0 | 0 | 0 | + | 0           | +           | 0           | +                     | 0           | +           | +           | +           | 0           | 0           | +      | + | 0 | 0 | + | 0√         | <b>0</b> √ | <b>0</b> √ |
| 3      | +                                                                                                                                                                                                                                                                                                               | 0 | + | + | 0 | 0 | 0 | + | 0           | +           | 0           | +                     | 0           | +           | 0           | +           | 0           | 0           | +      | 0 | + | 0 | + | <b>0</b> √ | 0√         | <b>0</b> √ |
| 4      | +                                                                                                                                                                                                                                                                                                               | 0 | + | + | + | 0 | 0 | + | 0           | +           | 0           | +                     | +           | 0           | +           | +           | 0           | 0           | +      | 0 | + | 0 | + | 0√         | 0√         | <b>0</b> √ |
| 5      | +                                                                                                                                                                                                                                                                                                               | 0 | 0 | + | + | + | + | + | 0           | +           | 0           | +                     | 0           | 0           | +           | +           | 0           | 0           | 0      | 0 | + | 0 | + | 0√         | 0√         | <b>0</b> √ |
| 6      | 0                                                                                                                                                                                                                                                                                                               | 0 | 0 | + | + | + | 0 | + | 0           | +           | 0           | +                     | +           | +           | +           | 0           | +           | 0           | 0      | + | + | + | 0 | 0√         | 0√         | <b>0</b> √ |
| 7      | 0                                                                                                                                                                                                                                                                                                               | 0 | 0 | + | + | + | 0 | + | 0           | +           | 0           | +                     | 0           | +           | 0           | +           | 0           | +           | +      | + | 0 | 0 | + | 0√         | <b>0</b> √ | <b>0</b> √ |
| A<br>C |                                                                                                                                                                                                                                                                                                                 |   |   |   |   |   |   |   |             |             |             |                       |             |             |             |             |             |             |        |   |   |   |   | ¢۲         | 0√         | 0√         |
|        | 72    Adsorbing RBCs:<br>R1 D+ C+ E- c- e+ K- Jk(a-) S-<br>R2 D+ C- E+ c+ e- K- Jk(b-) s-<br>rr D- C- E- c+ e+ K-    Note: In NRLBGS, selection of adsorbing RBCs<br>includes S and s typed RBCs to eliminate any<br>concerns with ambiguity of enzyme treatment to<br>eliminate reactivity to S and s antigens |   |   |   |   |   |   |   |             |             |             | American<br>Red Cross |             |             |             |             |             |             |        |   |   |   |   |            |            |            |

#### Case #4 - Is this Antibody to <u>High Prevalence</u> <u>Antigen or Autoantibody</u>? Further Testing:

- Allogeneic adsorption no antibodies to common antigens detected in adsorbed sera good, now we can proceed
- Subsequent testing considered:
  - Patient's serum with chemically modified RBCs to assist in determining antibody specificity
  - Patient's serum with RBCs negative for high prevalence antigens
  - Patient's RBCs with antisera to high prevalence antigens



### Case #4 - Further Work – Test Other Methods to help in Identification of Antibody

| Patient's Serum<br>+ | Antibody<br>Screen<br>Cell #1 | Antibody<br>Screen<br>Cell #2 | Autocontrol    |  |  |  |  |
|----------------------|-------------------------------|-------------------------------|----------------|--|--|--|--|
| Ficin Treated RBCs   | $+^{W}$                       | $+^{W}$                       | + <sup>W</sup> |  |  |  |  |
| DTT Treated RBCs     | 0√                            | 0√                            | 0√             |  |  |  |  |
| Albumin Method       | 0√                            | 0√                            | 0√             |  |  |  |  |
| Gel Method           | 1+                            | 1+                            | 1+             |  |  |  |  |

Notable results:

- 1. IRL Gel tests positive, including autocontrol, different from hospital testing (RBCs for Gel test manually prepared) which uses a different solution
- 2. DTT Treated RBCs non-reactive, ficin weaker, not typical for autoantibody Most likely Blood System implicated: KEL
  - Other antigens DTT sensitive and Ficin and Trypsin Resistant: LW Variable reactivity antigen to consider: Cr
- 3. Albumin testing also negative, due to technique or strength of antibody?



#### **Case #4 – Further Antibody Investigation**

High prevalence antigen negative RBCs tested:

| RBC | Phenotype | PEG AHG Result |
|-----|-----------|----------------|
| 1   | k-        | 2+             |
| 2   | Kp(b-)    | 2+             |
| 3   | Js(b-)    | 0√             |
| 4   | Lu(a-b-)  | 2+             |
| 5   | Yt(a-)    | 2+             |

Js(b-) RBCs negative!!!



#### Case #4 - Further Work – Genotype Results are In

Patient's genotype is in! Predicted RBC Phenotype is:

D+ C+ c+ E- e+, Fy(a-b+), Jk(a+b+), M+ N+ S- s+ U+, K- k+ Kp(a-b+) Js(a-b+), Do(a+b-) Hy+, Sc:1.-2, Di(ab+), LW(a+b-), Co(a+b-), Lu(a-b+), Yt(a+b-)

No negative results for high prevalence antigens, and in particular, predicted to be Js(b+)!



#### **Case #4 - Updated Clinical Information**

Hospital confirmed:

- Patient was not ever transfused
- Patient is Caucasian



#### Case #4 - Is this Autoantibody or Antibody to KEL System High Prevalence Antibody?

IRL decided to do autoadsorption since patient not transfused and autocontrol was positive in some techniques (though DAT negative) rather than thawing rare KEL System high prevalence antigen negative RBCS

Autoadsorption with papain treated patient's RBCs Tests performed in PEG and read at AHG with anti-IgG, while 3 times adsorbed serum was still positive, four times autoadsorbed patient serum was negative!!!

|     | D | C | C | E | е | К | k | Кра | Крь | Jsa | Js <sup>b</sup> | Jk <sup>a</sup> | Jk <sup>b</sup> | Fy <sup>a</sup> | Fyb | P1 | Le <sup>a</sup> | Le <sup>b</sup> | Μ | Ν | S | S | Х3             | X4         |
|-----|---|---|---|---|---|---|---|-----|-----|-----|-----------------|-----------------|-----------------|-----------------|-----|----|-----------------|-----------------|---|---|---|---|----------------|------------|
| I.  | + | + | 0 | 0 | + | 0 | + | 0   | +   | 0   | +               | +               | 0               | +               | 0   | +  | +               | 0               | 0 | + | 0 | + | + <sup>W</sup> | 0√         |
| Ш   | + | 0 | + | + | 0 | + | + | 0   | +   | 0   | +               | +               | +               | 0               | +   | 0  | 0               | +               | + | 0 | + | 0 | $+^{W}$        | <b>0</b> √ |
| III | 0 | 0 | + | 0 | + | 0 | + | 0   | +   | 0   | +               | 0               | 0               | 0               | +   | +  | 0               | +               | + | + | + | + | + <sup>w</sup> | <b>0</b> √ |



#### **Case #4 – Antibody Identification**

- Anti-Js<sup>b</sup> specificity
- Patient's RBCs typed serologically Js(a-b+)
- No underlying alloantibodies to common antigens detected
- Confounding tests:
  - Negative DAT in tube and Gel tests
  - Positive autocontrol with anti-IgG in:
    - PEG test 2+
    - Ficin test +<sup>W</sup>
    - IRL Gel test 1+



#### **Case #4 – Testing Interpretations**

- Autoadsorption removed anti-Js<sup>b</sup> reactivity after four adsorptions
  - IRL considered that the antibody could have been diluted by the 4<sup>th</sup> adsorption
  - IRL SOP allows up to six adsorptions
  - Therefore, concluded the antibody was adsorbed and was auto-specificity
- Patient's RBCs tested Js(b+)
- Patient's genotype predicted the phenotype as Js(b+)



#### Case #4 - Testing Not Performed but in Retrospect, of Academic Interest

- Did not test other rare KEL system high prevalence antigen negative RBCs
  - Maybe Js<sup>b</sup> antigen is weaker on some rare RBCs and unknown
- Did not perform sequencing to look for variant Js<sup>b</sup>
- Did not prepare and test an eluate from the patient's RBCs – even though DAT negative, might have been interesting
- Did not prepare and test and eluate from the adsorbing RBCs – to confirm Js<sup>b</sup> specificity



#### **Case #4 - Conclusions**

- Patient's report concluded that this antibody was auto anti-Js<sup>b</sup>
- Blood needs met by random units the same day
- Patient closely monitored with no laboratory or clinical signs of transfusion reaction
- Patient discharged and has not returned to the hospital



Tomb of Frederic Chopin Pere Lachaise cemetery in Paris Dreamstime



Heart of Chopin Warsaw, Poland Medical Express



## Case #4 – Lessons Learned from the Case

- The DAT does not always match the autocontrol
- Important to test autocontrol with each different serologic test method, the results could be different
- It helps to assess the serologic reactivity with different test methods
- Always attempt to phenotype the patient for the antigen you are assigning an antibody specificity to, it could be an autoantibody
- Genotyping is essential in complex cases



# Immunohematology Cases from the Crypt

#### HAPPY HALLOWEEN – HOPE YOU HAD FUN AND LEARNED SOMETHING ALONG THE WAY

Sandra.Nance@redcross.org

The need is constant. The gratification is instant. Give blood.<sup>™</sup>

